liebreadth

Breadth in finite dimensional algebras

0.1

19 April 2025

Óscar Fernández Ayala

Óscar Fernández Ayala

Email: oscar00ayala@gmail.com

Homepage: https://Osferay.github.io

Contents

1	1 Preface		3
	1.1 Breadth	3	
2	Lie algebras and breadth	4	
	2.1 Breadth		
	2.2 Lie Breadth	5	
3	Inflation of Lie algebras	6	
	3.1 Lie Breadth	6	
Re	eferences	8	
In	ndex	9	

Chapter 1

Preface

In this package we compute the breadth of Lie algebras. This package also include functions to compute covered Lie algebras of maximal class using a proces called inflation, this is described by Caranti, Mattarei, and Newman [CMN97].

1.1 Breadth

Given a Lie algebra L, we define its lower central series as $L=L^1>L^2>\dots$, where $L^{i+1}=L^iL$. The algebra L is nilpotent if there exists $c\in \mathrm{such}$ that $L^{c+1}=0$ and the minimal c with this property is the class $\mathrm{cl}(L)$ of L. For a nilpotent Lie algebra L the type of L is the vector (d_1,\dots,d_c) where $d_i=\dim L^i$. A nilpotent Lie algebra L is of maximal class if the type of L is $(2,1,\dots,1)$. The centralizer of $x\in L$ is the subspace of L defined by $C_L(x)=\{a\in L\mid ax=0\}$. For an algebra L, we define $\mathbb{C} \subset \mathbb{C} \subset \mathbb{$

Chapter 2

Lie algebras and breadth

2.1 Breadth

2.1.1 LieClass (for IsLieNilpotent)

 \triangleright LieClass(L) (attribute)

Computes the class of the nilpotent Lie algebra L.

2.1.2 LieType (for IsLieNilpotent)

 \triangleright LieType(L) (attribute)

Computes the type of the nilpotent Lie algebra L.

2.1.3 IsOfMaximalClass (for IsLieNilpotent)

 \triangleright IsOfMaximalClass(L) (property)

Returns: true or false

Returns whether the nilpotent Lie algebra *L* is of maximal class or not.

2.1.4 StructureMatrices (for IsLieAlgebra)

▷ StructureMatrices(L) (attribute)

Computes the structure matrices of the nilpotent Lie algebra L.

2.1.5 BasisLieCenter (for IsLieAlgebra)

 \triangleright BasisLieCenter(L) (attribute)

Returns the elements of the basis Lie algebra L that are contained in the center of L.

liebreadth 5

(property)

2.1.6 BasisLieDerived (for IsLieAlgebra)

ightharpoonup BasisLieDerived(L) (attribute)

Returns the elements of the basis Lie algebra L that are contained in the derived subalgebra of L.

2.1.7 LieAdjointMatrix (for IsLieAlgebra)

ightharpoonup LieAdjointMatrix(L) (attribute)

Computes the adjoint matrix of the Lie algebra L.

2.1.8 PrintLiePresentation (for IsLieAlgebra)

 \triangleright PrintLiePresentation(L) (attribute)

Prints the Lie presentation of the Lie algebra L.

2.2 Lie Breadth

2.2.1 InfoLieBreadth

▷ InfoLieBreadth (info class)

Info class for the functions of the breadth of Lie algebras.

2.2.2 LieBreadth (for IsLieNilpotent)

 \triangleright LieBreadth(L) (attribute)

Computes the breadth of the Lie algebra *L*.

2.2.3 IsTrueClassBreadth (for IsLieNilpotent)

▷ IsTrueClassBreadth(L)

Returns: true or false

Returns whether the Lie algebra L holds the class-breadth conjecture or not.

Chapter 3

Inflation of Lie algebras

A grading for a Lie algebra L decomposition $L = \bigoplus_{i=1}^n L_i$ that respects the Lie bracket, \textit{i.e.} $[L_i, L_j] \subseteq L_{i+j}$. Any nilpotent Lie algebras is graded by taking $L_i = \gamma_i(L)/\gamma_{i+1}(L)$. Let L be a nilpotent Lie algebra of maximal class, the two-step centralizers are the sets $C_i = C_{L_1}(L_i) = \{x \in L_1 \mid [x, L_i] = 0\}$ for all $2 \le i \le c$. Let $\mathcal{C} = \{C_i\} \setminus L_1$, we say that a Lie algebra of maximal class is covered if the set \mathcal{C} consist of all one-dimensional subspaces of L_1 . Let L be a graded Lie algebra $L = \bigoplus_{i=1}^n L_i$ over K = q for some prime power $q = p^n$. The field extension $A = K[\mathcal{E}]/\langle \mathcal{E}^p \rangle$ is a vector space over K of dimension p and A is an associative commutative algebra with unit. The algebra $L \otimes A$ over K defined by $[x \otimes a, y \otimes b] = [x, y] \otimes ab$ is a graded Lie algebra. Let M be a maximal ideal of L and consider the Lie subalgebra $M^{\uparrow} = M \otimes A$. Let D be a derivation of L of degree 1. Define D^{\uparrow} via: $D^{\uparrow}(x \otimes \mathcal{E}^i) = D(x) \otimes \mathcal{E}^i$, this is a derivation of M^{\uparrow} of degree 1. Define the derivation $E \in M^{\uparrow}$ as $E(x \otimes \mathcal{E}^i) = D^{\uparrow}(x \otimes \mathcal{E}^i \cdot \mathcal{E}^{p-1}) + 1 \otimes \partial_{\mathcal{E}}(\mathcal{E}^i)$. Let $S \in L_1 \setminus M$, take $D = \operatorname{ad}_S$ and extend it to M^{\uparrow} in the natural way to M^{\uparrow} . Denote $E_{S'}$ as previously. The \textit{inflation} $M^{\downarrow}L$ of L at M by $S \in L_1 \setminus M$ is the graded Lie algebra obtained as an extension of M^{\uparrow} by an element S' which is the extension of S that induces the derivation S, that is, S is a vector specific extension of S by an element S' which is the extension of S that induces the derivation S, that is, S is a vector S in S in

3.1 Lie Breadth

3.1.1 InfoInflation

▷ InfoInflation (info class)

Info class for the functions of the inflation of Lie algebras.

3.1.2 LieNilpotentGrading (for IsLieNilpotent)

▷ LieNilpotentGrading(L)

(attribute)

Computes a grading of the nilpotent Lie algebra L using the lower central series.

3.1.3 LieTwoStepCentralizers (for IsLieNilpotent)

▷ LieTwoStepCentralizers(L)

(attribute)

liebreadth 7

Computes the two step centralizers of the Lie algebra L.

3.1.4 IsLieCovered (for IsLieNilpotent)

▷ IsLieCovered(L)

(property)

Returns: true or false

Returns whether the Lie algebra *L* is covered or not.

3.1.5 PolynomialAlgebra (for IsField and IsFinite)

▷ PolynomialAlgebra(F)

(attribute)

For a finite field F computes the polynomial algebra F[x].

3.1.6 LieCoveredInflated (for IsInt)

▷ LieCoveredInflated(n)

(attribute)

For n = 2,3 computes the covered Lie algebras of maximal class using the polynomial algebra of dimension n.

3.1.7 LieMinimalQuotientClassBreadth (for IsLieAlgebra)

▷ LieMinimalQuotientClassBreadth(L)

(attribute)

Given a covered Lie algebras of maximal class L computes the minimal quotient that not holds the class-breadth conjecture.

References

[CMN97] A. Caranti, S. Mattarei, and M. F. Newman. Graded lie algebras of maximal class. *Transactions of the American Mathematical Society*, 349:4021--4051, 1997. 3

Index

```
{\tt BasisLieCenter}
    for IsLieAlgebra, 4
BasisLieDerived
    for IsLieAlgebra, 5
InfoInflation, 6
InfoLieBreadth, 5
{\tt IsLieCovered}
    for IsLieNilpotent, 7
IsOfMaximalClass
    for IsLieNilpotent, 4
{\tt IsTrueClassBreadth}
    for IsLieNilpotent, 5
{\tt LieAdjointMatrix}
    for IsLieAlgebra, 5
LieBreadth
    for IsLieNilpotent, 5
LieClass
    for IsLieNilpotent, 4
{\tt LieCoveredInflated}
    for IsInt, 7
{\tt LieMinimalQuotientClassBreadth}
    for IsLieAlgebra, 7
LieNilpotentGrading
    for IsLieNilpotent, 6
{\tt LieTwoStepCentralizers}
    for IsLieNilpotent, 6
LieType
    for IsLieNilpotent, 4
PolynomialAlgebra
    for IsField and IsFinite, 7
PrintLiePresentation
    for IsLieAlgebra, 5
StructureMatrices
    for IsLieAlgebra, 4
```